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Abstract

With the secondary bifurcation and the local post-secondary buckling behavior being analyzed in Part I, Part II of this
study consists of developing an adaptive non-stationary load sweeping algorithm to investigate post-buckling dynamics
and mode jumping phenomena of generally (mechanically and thermally) loaded thin plates in a global context. The non-
stationary sweeping procedure has the merits of adapting large load steps to capture static characteristics of stable equi-
librium paths both before and after mode jumping and reduce automatically the step size to ensure a dynamic transition
between the two stable branches. Thus, it is computationally effective. Furthermore, by adopting the non-stationary
sweeping scheme, this procedure can avoid spurious convergence of the transient response to an unstable equilibrium.

Corresponding to different post-secondary bifurcation forms, which are determined using asymptotical finite element
analysis developed in Part I, subsequent buckling patterns of various complexity occurring after mode jumping are
obtained using the method developed in this article. Qualitative changes in post-buckled patterns are observed after
the occurrence of the secondary bifurcation or the mode jumping. Free vibration analysis using the tangent stiffness
matrix obtained from the converged static or dynamic solutions shows a vibration modal shifting phenomena occurs
during the process of the load sweep. The spurious convergence phenomenon caused by the application of the tradi-
tional hybrid static–dynamic method is found and explained.
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1. Introduction

Compressively stressed elastic thin plates or panels may exhibit a complicated evolution of their post-
buckled patterns. When loaded into the post-buckling regime, some structures may experience a sudden
(dynamic) change of their buckling mode shapes, a phenomenon called mode jumping. Qualitatively differ-
ent propagations of the post-buckling patterns have been observed in a series of experiments on uniaxially
compressed plates or panels. In Stein�s experiment (Stein, 1959; Stoll and Olson, 1997), mode jumping was
observed when an aluminum plate (with unloaded edges free to move in-plane but constrained to remain
straight) encountered a secondary instability, whereas no dramatic changes of the post-buckled patterns
was found when a stiffened graphite panel (with free unloaded edges) was increasingly compressed to pass
its secondary buckling load until the failure of the structure (Knight and Starnes, 1988). More experimental
examples on mode jumping were reported in uniaxially compressions of a bilaterally constrained plate (Chai,
2002) and a four-edge integrated hat-stiffened composite panel (Falzon and Steven, 1997). For the former, a
contact/buckling problem, the lateral constraints led to a sequential plate snapping process arising from the
secondary buckling of contact zones in the plate, while for the latter the structure experienced smooth evo-
lution of post-buckled patterns until the tertiary bifurcation point was reached, where the panel exhibited a
dramatic change in buckling mode shapes. A detailed review of numerous analytical/numerical studies of
mode jumping can be found in the references Chen (2004) and Chen and Virgin (in press).

The qualitatively different development of the buckling patterns can be partly explained by the local
post-buckling analysis at the secondary (and higher order) bifurcation point(s). Asymptotic finite element
analysis in Part I of the current study shows that the different combination of boundary conditions and load
types may result in different post-secondary bifurcation forms (Chen and Virgin, in press). At the secondary
bifurcation point, if the bifurcation type is determined as of subcritical (meaning that all the local post-
secondary paths are unstable) mode jumping occurs immediately and a dramatic change of the post-buck-
led deformation shape can be observed. On the other hand, if an asymmetric or supercritical bifurcation
type is encountered, the transition of the post-buckled pattern is smooth and mode jumping may be
deferred to a tertiary or later bifurcation point. However, because mode jumping is characterized by the
dynamic switch between two (disconnected) stable branches, the local perturbation approach often fails
to predict the remote stable equilibrium state.

While the mode jumping of uniaxially compressed plates often indicates an increase of buckling wave
number, more geometrically complicated post-buckled patterns have been observed in thermally loaded
plates after the occurrence of mode jumping. This is because the latter demonstrates much stronger geomet-
ric non-linearity than the former (Chen and Virgin, 2004). In a recent experiment on the growth of a het-
eroepitaxial microelectronic film on a mismatched substrate, a complicated wrinkling pattern with in-plane
anti-symmetric property was observed by Hobart et al. during the annealing of the thin film at a high tem-
perature (Hobart et al., 2000). Although many physical insights of the wrinkling process have been revealed
using various analytic methods (Sridhar et al., 2001, 2003; Huang and Suo, 2002; Palasantzas and De
Hosson, 2003), these methods failed to explain the occurrence of the real anti-symmetric post-buckled
pattern. This may be attributed to the fact that the above methods are limited to linear analysis approaches
and that the film is assumed to be subjected to uniaxially compressive loading, ignoring the in-plane con-
straint on the unloaded edges. In addition, the plate model is considered as infinitely large with no bound-
ary effects being taken into account, although many studies show that both in-plane and out-of-plane
boundary constraints strongly affect the post-buckling behavior as well as mode jumping of the plate,
see for example (Supple, 1968; Stoll, 1994; Everall and Hunt, 1999; Tiwari and Hyer, 2002).

Clearly, a complete analysis of the post-buckling behavior (including the mode jumping) of plate under gen-
eral (mechanical and thermal) loading involves both the local post-secondary bifurcation analysis and a global
procedure to capture the remote stable equilibrium branch to which the plate may jump. Full non-linear finite
element analysis methods are usually used to achieve this goal. However, because of the disconnection of two
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stable equilibrium paths, the standard quasi-static continuation method is not sufficient by itself to obtain the
desired response of the structure. Many solution schemes has been developed to overcome this difficulty.

One scheme is to use a guessed solution which is assumed away from the primary post-buckling path as a
starting computational point for the jumped branch; after the convergence of this trial solution is reached, a
standard path-following method is continued to follow the post-jumped path (Marcinowski, 1999; Tiwari and
Hyer, 2002). Obviously this strategy is not robust and some a priori information of the target branch is needed.

Another is the well-known hybrid static–dynamic method developed by Riks et al. (1996). In this strat-
egy the standard quasi-static continuation method is used to follow the stable primary post-buckling path
until the secondary bifurcation point is encountered, then a step load increment is applied and the response
of the structure is sought dynamically; after the dynamical solution is converged near a remote stable solu-
tion (because of the structural damping) the quasi-static solution procedure is adopted again. Although this
technique has been used successfully to solve various problems, for example, the damage of a compressed
sandwich panel (Riks and Rankin, 2002) and the mode jumping of a compressed isogrid structure (Muheim
and Johnson, 2003), for a thermally loaded structure, where the external force cannot be given explicitly, it
may converge to an unstable solution. This spurious convergence phenomenon will be explained later in
this paper. In addition, the application of this method needs manual intervention.

Other solution algorithms (e.g. the continuation-unsymmetrical Lanczos algorithm (Chien et al., 2000)
and Newton–GMRES approach (Dossou and Pierre, 2003)) have also been proposed to solve the discrete
von Kármán equation directly. However, in these approaches, the definition of mode jumping is somewhat
different from what we adopt here: it is defined as the direct connection of the two stable solutions by an
unstable one. When the problem becomes more complicated, such as in the thermal case, multiple unstable
solution branches are required to connect these primary and target stable branches (Chen and Virgin,
2004). Clearly, using these path-following approaches to detect unstable connecting branches for a high
dimensional non-linear system is unrealistic in our context. Besides, from the engineering point of view,
we are primarily concerned with the stable solutions.

Based upon the local post-secondary analysis in Part I, in this paper an effective non-stationary load
sweep algorithm is developed to investigate the post-buckling dynamics and the mode jumping phenome-
non of the plate in a global context. The spurious convergence phenomenon caused by the classical hybrid
static–dynamic approach is found and explained. A complete numerical analysis of the important charac-
teristics of the mode jumping: the secondary bifurcation type, the morphological mutation of the buckled
patterns, and the change of natural frequencies versus load is presented.
2. Non-stationary sweep algorithm

2.1. Method selection and spurious convergence

The mode jumping phenomenon is characterized by a dynamic snap from the current stable equilibrium
position to a remote stable one when the load passes beyond the secondary critical point and the current
equilibrium path becomes unstable. Typically, this phenomenon can be investigated either by using an en-
tire transient analysis approach or a so-called hybrid static–dynamic method developed by Riks et al.
(1996). Because of its computational efficiency the latter is widely used.

However, our numerical experiments (using the Hilbert–Hughes–Taylor a method) show that although
the Riks� approach always succeeds in finding remote stable solutions for mechanically loaded plates, it of-
ten failed, even for very small time steps and kinetic energy thresholds, for the thermally loaded cases—the
dynamic solution seems to converge to an unstable equilibrium position near the secondary bifurcation
point. A similar example can be found in the analysis of a simple pendulum using the �trapezoidal rule�
(Crisfield, 1997), where the solution �locks� at a position close to the initial position for a certain time step.
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Fig. 1. The stable and unstable subspaces Es and Eu for the unstable equilibrium.
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This spurious convergence to the unstable solution may be attributable to the coupling effect between the
external force and the displacement, and a possible explanation is described as follows.

In the hybrid static–dynamical scheme, a small stepped load increment is applied to the structure so that
there may exist an unstable equilibrium which is slightly beyond the secondary bifurcation point and the
corresponding stiffness matrix has only one unstable eigenvalue. The local phase portrait for this unstable
equilibrium is shown in Fig. 1. For solutions coming close to this point, the tangent stiffness matrix at a
given point on the trajectory has an unstable subspace similar to the one shown in Fig. 1. For the mechan-
ical loading case, since the external force is fixed, the displacement increment is solely dependent on the
tangent stiffness at the starting point and the initial conditions. Because of the similarity of the unstable
subspace, the trajectory can escape exponentially fast from the unstable equilibrium along the unstable sub-
space. Nevertheless, the situation is different for the thermal case: because of the coupling of the external
force with displacement, the displacement increment now depends not only on the tangent stiffness and ini-
tial conditions but also on the coupled external force, therefore the solution may be pulled in by the unsta-
ble equilibrium and delayed before it finally escapes along the unstable subspace. That is, as time elapses,
the trajectory for the coupled system will move slowly along the unstable direction but with all solution
components corresponding to the stable subspace converging quickly to the unstable equilibrium solution.
This slow escape from the unstable equilibrium point makes the solution seem to converge to the unstable
equilibrium point. Numerical examples and more detailed discussion can be found in Section 3.

To overcome this difficulty, we introduce a non-stationary analysis technique which consists of a linear
sweep in the load of the form
kðtÞ ¼ k0 þ Rt; ð2:1Þ

where k0 is the starting load value, R is the load incremental rate and t is the time variable. Under the linear
sweep, the undesirable �locking� phenomenon will not happen. The changing of the load parameter with time
not only pushes the trajectory away from the secondary instability point, resulting in more and more unsta-
ble eigenvalues appearing in the tangent stiffness matrix along the trajectory, and but also serves as a con-
tinuous perturbation source. As a result, the trajectory cannot be attracted by a particular unstable point.

2.2. Implicit integration procedure

In this section, it is assumed that all the matrix and vector notations correspond to the global coordinate
system. The spatially discrete equations of motion are described in the form
M€dþ Cd
_dþ f iðdÞ � feðd; kðtÞÞ ¼ 0; ð2:2Þ
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where fi(d) and fe(d,k(t)) are the non-linear internal and external load vectors, respectively, and Cd is the
structural damping matrix. For the damping matrix, Rayleigh damping of the following form is assumed:
Cd ¼ cmMþ ckK; with cm ¼ 2pfmfn and ck ¼ fk=2pfn; ð2:3Þ

where fm and fk represent the non-dimensional damping ratios for the mass and stiffness matricies, respec-
tively, and fn represents the fundamental natural frequency at k = 0.

The numerical integration scheme consists of a predictor-corrector procedure and is based on the Hil-
bert–Hughes–Taylor a method (Crisfield, 1997). By introducing the equivalent dynamic residual force
qðd; _d; €dÞ, in the a method, the time-discrete form of (2.2) can rewritten as
qnþ1 ¼ ð1þ aÞff i
nþ1 � fe

nþ1 þ Cd
_dnþ1g � aff i

n � fe
n þ Cd

_dng þM€dnþ1 ¼ 0; ð2:4Þ
where � 1
3
6 a 6 0 is a free parameter. The above equation is supplemented by Newmarks� time integration

scheme:
dnþ1 ¼ dn þ Dt _dn þ
Dt2

2
fð1� 2bÞ€dn þ 2b€dnþ1g; ð2:5Þ

_dnþ1 ¼ _dn þ Dtfð1� cÞ€dn þ c€dnþ1g; ð2:6Þ
where the Newmark constants b and c are given by
b ¼ ð1� aÞ2=4; c ¼ ð1� 2aÞ=2. ð2:7Þ

In the �predictor� stage, the tangent stiffness KT,n is evaluated at the previous time step tn, i.e.,

KT ;n ¼
of i

od
jdn

, and the incremental �predictor step� Dd0
nþ1 is solved from the following equation:
KT ;nDd0
nþ1 ¼ D�f

e
; ð2:8Þ
where the equivalent dynamic tangent stiffness matrix KT ;n and the equivalent dynamic external force D�f
e

are defined as
KT ;n ¼ ð1þ aÞ KT ;n þ
c

bDt
Cd

� �
þ 1

bDt2
M; and ð2:9Þ

D�f
e ¼ ð1þ aÞðfe

nþ1 � f i
nÞ � aðfe

n � f i
nÞ þM

1

bDt
_dn þ
ð1� 2bÞ

2b
€dn

� �
þ ð1þ aÞ c

b
� 1

� �
Cd

_dn þ
ð1þ aÞðc� 2bÞ

2b
DtCd

€dn. ð2:10Þ
To this end, the displacement at the current time step tn+1 is updated by d0
nþ1 ¼ dn þ Dd0

nþ1, while the veloc-
ity _d

0

nþ1 and the acceleration €d
0

nþ1 are updated according to (2.6) and (2.5), respectively.
In the �corrector� stage, Newton–Raphson iteration is applied to make the equivalent dynamic residual

force qn+1 equal to zero. By applying a truncated Taylor expansion to (2.4), we have the incremental �cor-
rector� equation as
qkþ1
nþ1 ¼ qk

nþ1 þ
oq

od

����
dk

nþ1

ddkþ1
nþ1 ¼ qk

nþ1 þ K
k
T ;nþ1ddkþ1

nþ1 ¼ 0; ð2:11Þ
where ddkþ1
nþ1 is the incremental iterative �corrector step� at step n + 1 and iteration k + 1, while the dynamic

tangent stiffness matrix K
k
T ;nþ1 is now given by
K
k
T ;nþ1 ¼ ð1þ aÞ Kk

T ;nþ1 þ
c

bDt
Cd

� �
þ 1

bDt2
M. ð2:12Þ



H. Chen, L.N. Virgin / International Journal of Solids and Structures 43 (2006) 4008–4027 4013
The updated quantities can be obtained through the corrector equations resulting from the variational
forms of (2.5) and (2.6):
dkþ1
nþ1 ¼ dk

nþ1 þ ddkþ1
nþ1;

_d
kþ1

nþ1 ¼ _d
k

nþ1 þ
c

bDt
ddkþ1

nþ1;

€d
kþ1

nþ1 ¼ €d
k

nþ1 þ
1

bDt2
ddkþ1

nþ1.

ð2:13Þ
For the convergence test, the norms of the dynamical equivalent residual force and the displacement vec-
tors are checked by the following criteria:
kqkþ1
nþ1k 6 �fkfe

nþ1k; and kddkþ1
nþ1k 6 �ukde

nþ1k. ð2:14Þ
2.3. Automatic time steeping

The linear sweep technique in (2.1) is often combined with a full dynamic integration scheme to analyze
the loss of stability of the fundamental path (Virgin and Plaut, 2002). Since mode jumping is often charac-
terized by a transient snap between two �isolated� stable equilibrium paths of the structure, a very small time
step is needed to capture this phenomenon. A commonly used formula to estimate the time step for stan-
dard dynamic problems is
Dtdyn ¼ 1=ð20f Þ; ð2:15Þ
where f is the natural frequency of the highest mode that contributes to the response. For the plate models
used in this paper, our numerical experiments show that Dtdyn needs be as small as the order of 1.0 · 10�5–
1.0 · 10�4 s in order to satisfy the convergence requirement. Conventional dynamic automatic time
stepping schemes such as the one based on the �current frequency� (Crisfield, 1997) will not improve the
computational efficiency for the mode jumping problem, since basically this is still a full dynamic approach
and the estimated time step is still very small (on the order of 1.0 · 10�5 s).

Since we are primarily interested in stable equilibrium paths and stability transitions, we require a
numerical algorithm that can follow branches accurately and efficiently, including any transient motion ini-
tiated due to a local loss of stability. A quasi-dynamic time stepping technique is developed for this
purpose.

Let Nk denote the number of iterations needed to approximate the previous continuation step and Nopt

denote the optimal number of iterations. Then a simple strategy is to reduce the step size in the case
Nk > Nopt and increase it when Nk < Nopt. This is done with the following formula:
Dtkþ1 ¼
1=3Dtk if / < 1=3;

/Dtk if 1=3 6 / 6 3;

3Dtk if / > 3;

8><>: ð2:16Þ
where / = Nopt/Nk and Dtk+1 denotes the current time step. To distinguish the step size control between the
stable path-following phase and that of the transient response, the above standard step control scheme is
supplemented by a control on the maximum step size Dtmax. That is,
Dtmax ¼
Dtmst if Kk

T ;n is positive definite;

Dtmtr if Kk
T ;n is not positive definite;

(
ð2:17Þ
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where Dtmst and Dtmtr are the maximum step size assigned to follow the stable equilibrium branches and to
ensure the occurrence of the transient response, respectively. The checking of the positive definiteness of
the stiffness matrix can easily be achieved by applying Choleski�s factorization or a LTDL factorization. This
will not incur additional computational cost since the factorized matrices are also used to obtain the incremen-
tal displacement Dd or dd. The reason why we enforce the switching of the step size on (2.17) instead of on
(2.16) is that we still want to use the standard load step control scheme in the transient response stage to accel-
erate the convergence of the trajectory to the remote stable branch once the trajectory comes close to it.

To avoid the step size being too big, the traditional bisection technique is adopted, i.e., if a step fails to con-
verge within some maximum number of iterations Nmax, it will be retried with half the step size. By considering
that during the quasi-dynamic sweeping most time is spent on the transient stage, both Nopt and Nmax are set to
be 2. This is because 2 is the minimum iteration number which not only can minimize the computational cost if
a step has to be repeated but also has the capability to increase step size automatically.

With (2.17), Dtmst and Dtmtr can be controlled separately. Usually, they are problem dependent and are
based on trial and error. However, here we provide some general considerations on how to determine their
values. Dtmst and Dtmtr can be determined by the following equations:
DtmstR ¼ w1Dks; w1 6 1; ð2:18Þ
Dtmst � Dtdyn; ð2:19Þ
Dtmtr ¼ w2Dtmst w2 6 1; ð2:20Þ
where Dks is the estimated load step for static analysis which can be obtained by performing the static anal-
ysis, generally, a necessary a priori procedure in mode jumping analysis.

Eq. (2.18) means that the dynamic load incremental step for stable-path-following should be slightly less
than its static counterpart. A typical value for w1 is 0.05–0.2. The smaller the w1 the more data points can be
obtained and the less the possible repeat iterations. Condition (2.19) in conjunction with (2.17) enables the
adoption of large time steps to suppress the dynamic response along the stable branches. Moreover, con-
dition (2.19) provides an implicit constraint on the upper bound of R. This is generally preferred in mode
jumping analysis, because a large R may cause a large overshoot around the secondary bifurcation point.
There is not a strict rule to determine the load incremental rate R. In fact, this algorithm is not sensitive to
R, therefore a quite wide range of values can be chosen. In practice, a reasonable value of R can usually be
determined by experimental conditions. When the bifurcation point is encountered during the sweep, tran-
sient analysis is enforced by the combination of (2.17) with condition (2.20). A typical value for w2 is 0.01–
0.1. Although a more strict step control such as Dtmtr � Dtdyn can be used in (2.20), taking a large step size
even in the transient response phase can increase the dissipation of the kinetic energy for each time step.
3. Results and discussion

3.1. Model description

The methods outlined are used to analyze the mode jumping phenomenon of isotropic aluminum rect-
angular plates subjected to mechanical and thermal loads. Three plate models and their corresponding
boundary conditions are depicted in Fig. 2. In case MeCS, Fig. 2(b), the plate is subjected to the uniformly
distributed compressive load kbP with k the load parameter, while in cases ThermSS and ThermCC, Fig. 2(c)
and (d), uniformly distributed temperature increase DT is applied. Geometries and material properties for
these three models are listed in Table 1. It worth noting that for comparison purposes discussed in Part I of
this study (Chen and Virgin, in press), different geometries and material properties are selected for the
mechanical and the thermal cases. Specifically, MeCS shares the same geometric dimensions and material
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Fig. 2. Plate models and boundary conditions: (a) schematic diagram; (b) case MeCS, shorter edges clamped, longer edges simply
supported and in-plane fixed; (c) case ThermSS, four edges simply supported and in-plane fixed; (d) case ThermCC, four edges clamped
and in-plane fixed.

Table 1
Geometric dimensions and material properties

Parameter Mechanical loading MeCS Thermal loading ThermSS and ThermCC

Length La (mm) 644.14 762.00
Width Lb (mm) 119.63 282.22
Thickness h (mm) 1.829 1.984
Aspect ratio r = La/Lb 5.38 2.70
Young�s modulus E (GPa) 70 70
Poison�s ratio m 0.3 0.33
Therm-expansion coefficient a (�C�1) 23 · 10�6 23 · 10�6

Mass density q (kg/m3) 2.790 · 103 2.714 · 103

Damping ratio for M, fm 0.1 0.1
Damping ratio for K, fk 0.2 0.2
Imperfection amplitudea A0 (mm) 10% h 30% h

a For case MeCS, the initial imperfection has the form W0 = A0(v1b + v2b), while for cases ThermSS and ThermCC the form of
W0 = A0v1b is used, where v1b and v2b denote the first and the second linear buckling modes of the corresponding perfect plate,
respectively. v1b and v2b are normalized such that kvibk1 = 1, i = 1,2, where kvibk1 = max{vib Æek}, k = 1,2, . . ..
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properties as Stein�s experimental model, while the plate used in ThermSS and ThermCC is identical with
the one in the reference Chen and Virgin (2004).

For Rayleigh damping defined in Eq. (2.3), damping coefficients cm and ck are selected by analogy to a
linear, single degree-of-freedom oscillator, leading to the equivalent non-dimensional damping ratio
2n = nm + nk (Muheim and Johnson, 2003). Specifying nm = 0.1 and nk = 0.2 in Table 1 leads to
n = 0.15, which is within the recommended range of 0.05 < n < 0.20 from the reference Riks et al. (1996)
(in which n = nm = nk = 0.1 is assumed).

HC finite element descretization is used to obtain numerical solutions and mesh sizes for three plate
models are determined by convergence tests. As results in Part I shows that mesh sizes 49 · 9 and
40 · 12 are sufficient for the mechanical loading and thermal loading cases, respectively, the following anal-
ysis is carried out using these mesh sizes. For more discussions on the plate model, one may consult Part I.
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3.2. Summary of local post-secondary bifurcation analysis

This subsection provides a brief overview of the local post-secondary analysis results obtained by using
asymptotic finite element analysis developed in Part I. The first and secondary buckling loads as well as the
secondary bifurcation type for each of three plate models are shown in Table 2.

It is observed from Table 2 that the secondary bifurcation of the uniaxially compressed plate, MeCS,
occurs at a load level about 1.75 times that of the primary buckling load (Nb1/Nb2 = 1.75). Whereas, for
the four-edge in-plane fixed thermally loaded plates, the secondary bifurcation point of occurs much further
beyond its primary buckling point, with DTb2/DTb1 being 9.90 in ThermCC and 44.15 in ThermSS. This
may be attributed to the strong geometric non-linearity caused by the boundary constraints (both in-plane
and out-of-plane) (Chen and Virgin, 2004). Because of the intensive coupling between the external load and
the displacement field, the thermally buckled plate demonstrates much stronger geometric non-linearity
than the mechanically loaded case. Therefore, the analysis of the mode jumping of the former cannot be
handled easily by using the equivalent bi-axially compressed mechanical model with simple linear relations
between the longitudinal and transverse edge forces.

Initial post-secondary bifurcation behaviors are studied by using the perturbation method introduced in
Part I. Bifurcation types listed in Table 2 are determined by calculating the bifurcation coefficients using a sin-
gle mode analysis approach. Three typical bifurcation types—asymmetric, subcritical and supercritical, are
found for plates with different combinations of load types and boundary conditions. The initial post-second-
ary bifurcated paths and their stability are analyzed by using a multi-mode dynamic reduction method.
Results show that for the asymmetric bifurcation case, MeCS, the stable bifurcated path quickly loses its
stability beyond the secondary bifurcation point, with Nx � Nb2 � 0.0175 N/mm or DNx/Nb1 � 2.45 · 10�4.
Therefore, strictly speaking the mode jumping occurs slightly beyond the secondary bifurcation point.

Bifurcation diagrams (not show here) obtained by the multi-mode dynamic reduction method reveal that
the thermally loaded plates experience subcritical and supercritical post-secondary bifurcation behaviors,
thus confirming the single model analysis result. The post-secondary bifurcation and mode jumping is re-
vealed by the load vs. displacement relations in Fig. 3. For comparison purposes, results for ThermSS are
obtained by the analytic method developed in our previous paper (Chen and Virgin, 2004) to overcome the
limitations of the local perturbation approach. With regards to the asymptotic bifurcation case, MeCS, be-
cause the stable post-secondary buckling branch loses its stability immediately after the secondary point
(DNx/Nb1 = 2.45 · 10�4) and the local perturbation analysis cannot capture the remote stable branch to
which the plate may jump, no corresponding load vs. displacement plot is provided.

Fig. 3(a) exhibits a complicated post-secondary bifurcation behavior for the thermally loaded simply
supported plate. Near the secondary buckling load DTb2 = 69.31 �C, the bifurcation is subcritical but the
unstable bifurcated paths are blocked by further bifurcation points; as a result, three unstable bifurcation
paths are needed to connect the fundamental path and the remote stable target branch, demonstrating the
existence of strong non-linearity. In Fig. 3(b) the multi-mode perturbation analysis provides qualitatively
Table 2
The primary and second buckling loads of three plate models

Cases First buckling
loada Nb1(DTb1)

Secondary buckling
loadb Nb2(DTb2)

Load ratio Nb2/Nb1

(DTb2/DTb1)
Secondary
bifurcation
types

MeCS 77.937 N/mm 136.19 N/mm 1.747 Asymmetric
ThermSS 1.518 �C 67.04 �C 44.15 Subcritical
ThermCC 5.279 �C 52.29 �C 9.90 Supercritical

a The first buckling load is obtained from the corresponding perfect plate.
b The second buckling load is the primary buckling load obtained in the fully geometrically non-linear analysis of the imperfect plate.
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the post-secondary buckling behavior of the four-edge clamped plate, ThermCC. At DTb2 = 52.29 �C or
DTb2/DTb1 = 9.90, two stable branches bifurcate from the secondary bifurcation point. Slightly above
the bifurcated point, at DT = 53 �C, another pair of branches emanate from the fundamental path and
are initially unstable. More stable branches appear as the temperature reaches 72 �C. Mode-jumping is ob-
served at DT = 78 �C, where the first pair of stable branches lose their stability and the plate will �jump� to a
remote state on one of the still stable branches. Note that the perturbation method has been used as a
branch-switching technique to obtain arc-length results shown in Fig. 3(b). When compared to arc-length,
the perturbation results show good agreement up to 8 �C above the secondary bifurcation point.

A close scrutiny of Fig. 3 also reveals an interesting phenomenon: for the thermally loaded plate, after
the passing of the secondary bifurcation point, stable equilibrium paths appear in pairs and each pair seems
to demonstrate some kind of symmetry with respect to the fundamental path. As we will show later, this
kind of symmetry actually reflects the fact that moving along a pair of stable paths (supercritical pair
for ThermCC or the remote target one for ThermSS), the frequencies of the plate at the two corresponding
points on that pair are identical.

3.3. Spurious convergence

In the hybrid static–dynamic method, the static analysis approach is stopped when the secondary bifur-
cation point is encountered. Then a small stepped load increment is applied and a dynamic analysis ap-
proach is adopted to simulate the �jumping� of the equilibrium position to a remote stable branch. In
this paper, this is accomplished by using the Hilbert–Hughes–Taylor a method. For both the mechanically
loaded plate, MeCS, and the thermally one, ThermSS, various different choices of parameters such as the
load step Dk or DT, the size of the time step (with and without the automatic time stepping), the coefficient
a, and the kinetic energy threshold have been tried. It is interesting to note that by using the above integra-
tion scheme, the remote stable state can always be found for MeCS while for ThermSS the solution often
seems to converge to an unstable equilibrium position on the fundamental path. In Section 2.1, the spurious
convergence phenomenon was explained by the slow movement of the trajectory along the unstable sub-
space of the unstable equilibrium due to the coupling effect between the external force and the displacement.
To verify this claim, a typical numerical example for the thermally loaded plate (ThermSS) is presented in
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Fig. 4, with parameters as shown. As regards the automatic time stepping, a technique based on the �current
frequency� (Crisfield, 1997),
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x2 ¼ DdTKDd

DdTMDd
; Dtnew ¼ 0.05

2p
jx2j ;
is used.
Fig. 4(a) and (b) give a sense of the spurious convergence. Starting from the current equilibrium position A,

the trajectory seems finally to converge to a remote point B, as if it is a regular stable equilibrium. In the mean-
time, the kinetic energy first evolves to the maximum value, then keeps oscillating and decaying until the
threshold is met, with Kend/Kmax = 1.50 · 10�8. However, a close examination of the tangent stiffness matrix
at point B shows that there exist two negative eigenvalues, indicating that point B is actually an unstable equi-
librium. To study this spurious attraction, we project the displacement and velocity vectors d and _d onto the
unstable and the stable subspaces Eu and Es, respectively. For simplicity, only the first six eigenpairs—(r1,v1),
(r2,v2), . . . , (r6,v6), are used, with r1 = �648.9, r2 = �423.7, r3 = 3574.9, r4 = 8171.4, r5 = 8237.0 and
r6 = 9102.2, respectively. Thus, Eu = {v1,v2} and Es = {v3,v4,v5,v6}. A close examination of Fig. 4(c) and
(e) reveals that as time elapses the displacement projections on the unstable eigenvectors keep increasing or
decreasing while the projections onto the stable subspace oscillate, decay and finally converge. An even clearer
picture is reflected by the velocity projections in Fig. 4(d) and (f). Although the velocity projections on the sta-
ble subspace eventually decay to zero, those on the unstable subspace remain consistently rising or falling,
even if the kinetic energy becomes very small. It is this slow escape of the trajectory from the unstable subspace
of the point B that causes the spurious convergence.

3.4. Non-stationary sweep

The non-stationary sweep method outlined before is used to analyze mode jumping for the three plate
models. Starting from an equilibrium position on the fundamental path, the plate is subjected to a linear
load sweep with a constant incremental rate R. At first, the load is increased to pass the secondary bifur-
cation point so that the plate will �jump� dynamically to a remote stable branch. Then, we decrease the load
with the same R and expect the plate to �jump� back to its fundamental path.

For the case ThermSS, in the ascending stage the temperature rises from 60 �C (90% DTb2) to 80 �C
(110% DTb2), with R = 10 �C/s, while during the descending procedure the temperature drops from
80 �C to 27 �C (40% DTb2), with the same R. The maximum allowable time steps to encourage the sta-
ble-path-following and to enforce the transient switching in the quasi-dynamic analysis are set at
Dtmst = 0.02 s and Dtmtr = 0.002 s, respectively. Although for the given incremental ratio, larger step sizes
such as Dtmst = 0.2 s and Dtmtr = 0.02 s also work, the main purpose of our choosing the smaller values is to
provide enough data points (temporal resolution) for the later natural frequency analysis.

Fig. 5 provides a 3-D phase plot and the time history of kinetic energy during the ascending stage while
the hysteretic behavior of the plate is depicted in Fig. 6. Stable equilibrium branches, both before and
after the mode jumping, are captured with good accuracy, demonstrated by the small values of kinetic
energy in the path-following procedures and the overlapping of the static and quasi-dynamic results when
the displacement jumps back to its fundamental path. From Fig. 5(a), it is observed that the trajectory at
first follows the stable static equilibrium branch until the occurrence of the secondary instability point,
DTb2 = 67.04 �C. Then it escapes from the unstable fundamental path, spins around a remote stable equi-
librium branch for a while, jumps to another stable one and finally follows the latter. The stability of the
two stable equilibrium branches are confirmed by monitoring the positive-definiteness of the stiffness matri-
ces during the snap, which is indicated by the solid circles in Fig. 6(a). It is interesting to note that the dy-
namic jump in fact involves the interaction between a pair of remote stable target branches, see Fig. 3(a).
The two pulses appearing in the energy plot, Fig. 5(b), reflect the escaping nature of the trajectory from the
unstable fundamental path and from one of the stable target branches. During the descending stage, the
target branch loses its stability at DT = 51 �C, then, after an intermediate jump, the plate jumps back to
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its fundamental path at 48 �C, see Fig. 6(a). The development of the bucking patterns are also checked
carefully. Along the fundamental path, the pattern evolves smoothly from the (1, 1) mode (due to the
initial imperfection) to the complicated �symmetric bottles� indicated by Fig. 6(b), with their displacement
contours symmetric with respect to both the x- and y-axes. However, after the mode jumping, this kind
of symmetry is broken and the buckling pattern changes dramatically to the �oblique bumps�, with the
displacement contours now symmetric with respect to the center of the plate, Fig. 6(c).

For the four edges clamped case, ThermCC, the mode jumping occurs at the tertiary bifurcation point,
DTb3 � 84 �C, therefore the linear sweep starts at an equilibrium position on one of the stable post-secondary
bifurcated branches. During the ascending stage the temperature rises from 75 �C (90% DTb3) to 100 �C (120%
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DTb3), with R = 10 �C/s, while during the descending procedure the temperature drops from 100 �C to 45 �C
(54% DTb3), with the same R. The results are presented in Fig. 7. It can be observed from Fig. 7(a) that
although there is a delay or over-shoot between the loss of stability of the stable branches and the dynamic
snap during both the ascending and descending procedures, by monitoring the positive-definiteness of the
stiffness matrix our algorithm predicts accurately when these instabilities will happen—the stable post-
secondary bifurcation path becomes unstable when DT reaches 84 �C while the target stable branch becomes
unstable when DT reduces to 72 �C. This agrees well with the previous multi-mode perturbation analysis
which reveals in Fig. 3(b) that multiple stable branches coexist when the temperature is above 72 �C. Interest-
ingly, during the descending procedure, after the mode jumping, the solution follows the post-secondary
bifurcated branch, passes the secondary bifurcation point and continues to follow the fundamental branch.

The most intriguing finding is the propagation of the buckling patterns during the temperature sweep.
Again, along the fundamental path the buckling pattern of the plate demonstrates symmetry with respect
to both the x- and y-axes, Fig. 7(b). The secondary bifurcation point indicates the breaking of symmetry in
the y-direction—two buckled patterns on point B and C in Fig. 7(c) and (d) are only symmetric with respect
to the y-axis. Interestingly, each of the two buckled patterns seems to come from flipping its counterpart
about the center line parallel to the x-axis. The breaking of symmetry continues when the tertiary bifurca-
tion is encountered. The buckled pattern on the remote target path demonstrates the breaking of symmetry
in both the x- and y-axes—displacement contours now exhibit the �worm-like� pattern and again are sym-
metric with respect to the center of the plate.

The non-stationary sweep results of the uniaxially compressed plate, case MeCS, are provided in Fig. 8.
The load sweep starts at Nx/Nb1 = 1.5, at first increases to Nx/Nb1 = 2.0 with R/Nb1 = 0.2 (1/s) then reduces
to Nx/Nb1 = 1.1 with the same R. Again the hysteretic behavior is captured by the non-stationary sweep. In
contrast with the free-straight-longer-edges case (Stein�s experiment), in which the mode jumping demon-
strates the transition of bucked patterns of the plate from mode (5,1) to (6,1) (Riks et al., 1996), the buck-
led patterns for MeCS now snap from mode (4,1) to (5, 1), see Fig. 8(b) and (c). Thus, the secondary
bifurcation point for the uniaxially loaded plate often indicates the increment of the wave number by one.
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3.5. Vibration behavior

Natural frequencies and vibration modes are calculated as we trace the equilibrium before and after the
mode jumping. Specifically, the lowest three natural frequencies and the corresponding vibration modes on
the fundamental equilibrium path and the remote target path are computed based upon the previous non-
stationary sweep results. Since we focus only on stable solutions, the computation is performed only when
the stiffness matrix is positive definite. For three load cases, the first three natural frequencies on the fun-
damental path and the jumped path are depicted in Figs. 9–11, where eigenvalue curves are labelled by their
order, not by mode.

Free vibration results for the simply supported plate, ThermSS, can be found in Fig. 9. The comparison
of the natural frequencies obtained by the non-stationary sweep method, Fig. 9(a), with those by the ana-
lytic method, Fig. 9(b), shows good agreement. It is worth mentioning that because the two stable target
branches demonstrate some kind of symmetric relationship (see Fig. 3(a)), at the corresponding points
on these branches the natural frequencies are identical. The effect of the primary and the secondary bifur-
cation points on the natural frequencies can be observed clearly in Fig. 9(a). When the temperature in-
creases to its primary buckling value (1.5 �C), natural frequencies drop initially then increase. However,
when the secondary buckling temperature (67 �C) is reached the first natural frequency drops to zero
and all three natural frequencies jump to their new values on the remote path. During the reverse sweep
procedure, three natural frequencies drop consistently until the current branch loses its stability at
52 �C, where the first natural frequency tends to zero, then they jump back to their original values on
the fundamental path.

Another interesting phenomenon that can be found is the �mode shifting�, as mentioned in Chen and
Virgin (2004). It can be observed in Fig. 9(a) that in the primary post-buckling range there exist several
compound points where the first and the second natural frequency curves intersect. Between two neigh-
boring compound points, the fundamental mode shape remains similar, but as they are passed from the
left the fundamental mode shape will change to a form corresponding to a previously higher frequency. A
quick examination shows that no such �mode shifting� can be found on the jumped paths. In Fig. 9(a)
seven points are assigned to reveal this �mode shifting� and to disclose the vibration mode shape after



Fig. 9. The first three natural frequencies on the fundamental path and the jumped path with the lowest vibration modes at given
points, case ThermSS. (a) Quasi-static and non-stationary sweep finite element methods; (b) analytic method with 27 global modes
(Chen and Virgin, 2004); (c–i) lowest vibration modes at points P1–P7, respectively.
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mode jumping. Fig. 9(c)–(h) illustrate the changing of vibration modes from (1, 1) to (2,1) and higher
modes. Like their static deformation forms (or buckling patterns) discussed in the previous section, all
the vibration modes obtained about the equilibrium points on the fundamental path demonstrate double
symmetry, i.e., their contour plots are symmetric with respect to both the x- and y-axes. In addition, the
node lines of the plate remain straight. Similarly, such symmetry is destroyed by the occurrence of the
secondary instability and the mode jumping. Instead of exhibiting x and y symmetry, the contour plot
of the vibration mode on the target path (see Fig. 9(i)) now demonstrates the symmetry with respect
to the center of the plate, with the node lines being distorted and curved.

Natural frequencies and vibration modes for the four-edge-clamped plate, ThermCC, are reported in Fig.
10. The lowest natural frequency drops to zero at 52 �C, 84 �C and 70 �C, corresponding to the secondary and
tertiary bifurcation points and the point where the jumped path loses its stability. The lowest frequency re-
duces in the vicinity of initial buckling but initial imperfections prevent it from going to zero (near 5 �C).
Again, the �mode shifting� phenomenon is observed on the primary post-buckling regime. However, there
is no evidence that such shifting occurs on the stable post-secondary bifurcation path or the remote jumped



Fig. 10. The first three natural frequencies on the fundamental path and the jumped path with the lowest vibration modes at given
points, case ThermCC. (a) Quasi-static and non-stationary sweep finite element methods; (b–i) lowest vibration modes at points P1–
P8, respectively.
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path. The investigation of the lowest vibration modes on the fundamental path, Fig. 10(b)–(f), illustrates the
�mode shifting� phenomenon. Moreover, all these modes demonstrate the double symmetry with respect to
both the x- and y-axes and the node lines remains straight, just like in the simply supported case, ThermSS.
Nevertheless, a different situation happens when the secondary instability is encountered—the secondary
bifurcation point now designates the breaking of symmetry only with respect to the x-axis. Contour plots
of the vibration modes of the points P6 and P7 on the post-secondary bifurcation path show symmetry only
with respect to the y-axis, see Fig. 10(g) and (h). The tertiary bifurcation point continues this symmetry break-



Fig. 11. The first three natural frequencies on the fundamental path and the jumped path with the lowest vibration modes at given
points, case MeCS. (a) Quasi-static and non-stationary sweep finite element methods; (b–g) lowest vibration modes at points P1–P6,
respectively.
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ing—the y symmetry is finally broken by the occurrence of the mode jumping. The contour plot of the lowest
vibration mode at point P8 on the remote buckled path, Fig. 10(i), now demonstrates symmetry with respect
to the center of the plate and again the node lines are distorted and become node curves.

Fig. 11 provides the results for the mechanically loaded plate, MeCS. The lowest natural frequency
drops to zero at Nx/Nb1 = 1.7 and Nx/Nb1 = 1.6, respectively, corresponding to the two compressive load
levels where mode jumping emerges. Although no obvious �mode shifting� can be found in the frequency
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plot, the tendency of the exchange of the first and second, the second and the third, and again the first and
the second vibration modes can be observed roughly at Nx/Nb1 = 0.6, 0.8, and 1.0, respectively, in Fig.
11(a). This kind of curve veering may be caused by the initial imperfection of the plate. A similar phenom-
enon is also found in an axially compressed braced column (Plaut et al., 1995). On the fundamental path,
the lowest vibration modes changes from (1, 1) mode at P1, to (3,1) mode at P2 and finally to (5, 1) mode at
P5, slightly before the bifurcation point. After the mode jumping the vibration mode at P6 shows an incre-
ment of one wave number, i.e., the (6,1) mode. The secondary bifurcation points do not reveal any obvious
breaking of symmetry in the physical sense.
4. Concluding remarks

A complete investigation of post-buckling behaviors (including post-buckling dynamics and mode jump-
ing) of generally loaded rectangular plates is achieved by combining the local post-secondary analysis with
a global non-stationary study. Secondary bifurcation types and the initial post-secondary buckling behav-
iors are determined by applying an asymptotic finite element analysis approach introduced in Part I, while
an adaptive non-stationary load sweeping algorithm is developed to analyze the mode jumping in a global
context. With the utilization of an automatic time stepping scheme, the non-stationary procedure has the
merits of adapting large load steps to capture the static characteristics of the stable equilibrium paths both
before and after mode jumping and reducing automatically the step size to ensure the dynamical transition
between the two stable branches. Thus, it is computationally effective.

Three typical instability types—asymmetric, supercritical and subcritical bifurcations are observed
according to the different combinations of boundary conditions and load types. Various subsequent buck-
ling patterns, such as �bumps� for the uniaxially compressed plate, �oblique bumps� for the thermally-loaded
simply supported plate and the �worm-like� for the thermally-loaded clamped plate occurring after the mode
jump are also found. While the mode jumping for the mechanically-loaded plate corresponds to the increase
of the wave number of the static deformation along the longitudinal direction, the dynamic snap for the
thermally-loaded plates demonstrates the breaking of symmetry of the post-buckled shapes: on the funda-
mental path the static deformation is symmetric to both the x- and y-axes; after the mode jumping the
deflection is found to be antisymmetric to both the x- and y-axes, i.e., it is now symmetric with respect
to the center of the plate. Particularly, for the thermally-loaded four-edge clamped plate, such breaking
of symmetry consists of two continuous morphological mutations of the post-buckled patterns—the sec-
ondary bifurcation point indicates the breaking of the symmetry with respect to only the x-axis while
the tertiary bifurcation point designates the destruction of symmetry with respect to both the x- and y-axes.

Spurious convergence phenomenon found in the transient analysis procedure in the hybrid static–
dynamic method is explained by the slow movement of the trajectory along the unstable subspace of an
unstable equilibrium due to the coupling effect between the external force and the displacement. Free vibra-
tion analysis of the plate by tracing the equilibrium path and natural frequencies reveals the occurrence of
the �mode shifting� phenomenon (exchanging of vibration modes) on the fundamental path for thermally
loaded plates. In contrast, for mechanically-loaded plates, the existence of �curve veering� (the tendency
of exchanging of vibration mode) is also observed on the fundamental path.
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